Math 3B — Week 2

Integration by u-substitution Evaluate each of the following integrals.
(a) $\int x^{2} \tan \left(x^{3}\right) d x$
(e) $\int \frac{2 \sin (x)}{1+\cos (x)} d x$
(b) $\int\left(x^{2}+x^{3}\right)^{2}\left(2 x+3 x^{2}\right) d x$
(f) $\int \sin ^{3}(x) \cos (x) d x$
(c) $\int x e^{x^{2}} d x$
(g) $\int \sin ^{4}(7 x) \cos (7 x) d x$
(d) $\int \frac{\sin (\ln (x))}{x} d x$
(h) $\int\left(\int_{0}^{y} x^{2} \sqrt{1+x^{3}} d x\right)^{7} y^{2} \sqrt{1+y^{3}} d y$
(Hint: FTC!)

If I find some time, I may write actual solutions for this. For now, here are some substitution suggestions.
(a) Let $u=x^{3}$.
(b) Let $u=x^{2}+x^{3}$.
(c) Let $u=x^{2}$.
(d) Let $u=\ln (x)$.
(e) Let $u=1+\cos (x)$.
(f) Let $u=\sin (x)$ or $u=\sin ^{2}(x)$.
(g) Let $u=7 x$ and $v=\sin (u)$.
(h) Let $u=\int_{0}^{y} x^{2} \sqrt{1+x^{3}} d x$.

Definite Integrals with u-substitutions Redo the last page as definite integrals using both methods of computing definite integrals that require u-substitutions.

